Toggle Main Menu Toggle Search

Integration using Trigonometric Identities


Trigonometric identities can be used to simplify and evaluate integrals. In some cases trigonometric identities may be used to write the integrand in a form which can be integrated directly. In others, a trigonometric substitution can transform the integral into a simpler form.

Worked Examples

Example 1

Find $\displaystyle{ \int\sin^2{x}\mathrm{d} x. }$


Recall the trigonometric identity $\cos{2\theta}=1-2\sin^2{\theta}$.

Rearranging this gives $\sin^2{\theta}=\dfrac{1}{2}(1-\cos{2\theta})$, and the integral can therefore be written as:

\[\int\sin^2{x}\mathrm{d} x = \int\dfrac{1}{2}(1-\cos{2x})\mathrm{d} x.\]

The integral is now in a form which can be evaluated directly:

\begin{align} \int\dfrac{1}{2}(1-\cos{2x})\mathrm{d} x &= \dfrac{1}{2} \int \left( 1 - \cos{2x}\right) \mathrm{d} x \\ &= \dfrac{1}{2} \left( x - \dfrac{1}{2}\sin{2x} \right) +C \\ &= \frac{x}{2} - \frac{1}{4}\sin 2x + C. \end{align}

Example 2

Find $\displaystyle{ \int\cos^3(x)\sin^2(x)\mathrm{d} x. }$


Here there is no obvious identity which simplifies the integral. It is necessary to manipulate the integrand in such a way that an identity can be used.

Write $\cos^3{x}=\cos{x}\cos^2{x}$. Then by the identity $\cos^2{\theta}+\sin^2{\theta}=1$, we have $\cos^2{\theta}=1-\sin^2{\theta}$ and $\cos^3{x}$ can be written in the form:


Substituting this expression into the integral gives:

\[\int\cos^3{x}\sin^2{x}\mathrm{d} x=\int\cos{x}\bigl(1-\sin^2{x}\bigl)\sin^2{x}\mathrm{d} x.\]

Now introduce the substitution $u=\sin{x}$. Then $\mathrm{d} u =\dfrac{\mathrm{d} u}{\mathrm{d} x}\mathrm{d} x=\cos{x}\mathrm{d} x$.

Substitute $u=\sin{x}$ and $\mathrm{d} u=\cos{x}\mathrm{d} x$ into the integral: \begin{align} \int \cos{x} (1-\sin^2 x)\sin^2 x \mathrm{d} x &= \int (1-\sin^2 x ) \cdot \sin^2 x \cdot \cos x \mathrm{d} x \\ &= \int(1-u^2) u^2 \mathrm{d} u. \end{align}

This can be evaluated directly in terms of $u$: \begin{align} \int (1 - u^2) u^2 \mathrm{d} u &=\int u^2-u^4\mathrm{d} u \\ &=\dfrac{u^3}{3}-\dfrac{u^5}{5}+C. \end{align}

Substituting $u=\sin{x}$ into this expression gives the value of the integral in terms of the original variable $x$:

\[\int\cos^3{x}\sin^2{x}\mathrm{d} x=\dfrac{1}{3}\sin^3{x}-\dfrac{1}{5}\sin^5{x}+C.\]

Example 3

Find $\displaystyle{ \int\dfrac{1}{1+x^2}\mathrm{d} x }$ by substituting $x=\tan{\theta}$.


If $x=\tan{\theta}$ then \begin{align} \mathrm{d} x &= \dfrac{\mathrm{d} x}{\mathrm{d} \theta}\mathrm{d} \theta \\ &= \dfrac{\mathrm{d

{\mathrm{d} \theta}\bigl[\tan{\theta}\bigl]\mathrm{d} \theta \\ &= \sec^2{\theta}\mathrm{d} \theta. \end{align}

Substituting these expressions into the integral gives:

\[\int\dfrac{1}{1+x^2}\mathrm{d} x=\int\dfrac{\sec^2{\theta} }{1+\tan^2{\theta} }\mathrm{d} \theta.\]

Recall the trigonometric identity $\sec^2{\theta}=1+\tan^2{\theta}$. Making use of this identity allows the integral to be evaluated directly:

\begin{align} \int\dfrac{\sec^2{\theta} }{1+\tan^2{\theta} }\mathrm{d} \theta &= \int\dfrac{\sec^2{\theta} }{\sec^2{\theta} }\mathrm{d} \theta \\ &= \int 1 \mathrm{d} \theta \\ &= \theta + C. \end{align}

To transform this result back into an expression in the original variable $x$, note that $\theta=\arctan{x}$.


\[\int\dfrac{1}{1+x^2}\mathrm{d} x=\arctan{x}+C.\]


Video Examples

Example 1

Prof. Robin Johnson uses trigonometric identities to find $\begin{align}\int \sin^3{x}\;\mathrm{d}x\end{align}$.

Example 2

Prof. Robin Johnson uses a trigonometric identity to find the integral of a trigonometric function raised to a power, $\begin{align}\int\cos^3{(2-5x)}\;\mathrm{d}x\end{align}$.

Example 3

Prof. Robin Johnson uses a trigonometric identity to find $\begin{align}\int_0^1\dfrac{\mathrm{d}x}{\sqrt{1-x^2} }\end{align}$ by subsititution.

See Also

External Resources

Whiteboard maths

More Support

You can get one-to-one support from Maths-Aid.